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Abstract

Cryptography involves the development of secure communications and is absolutely fundamental to the world we
live in. Every time we connect to a website, send an email or pay using a credit card we are placing our trust in the
mathematics underpinning one of humanity’s most important inventions.

Whitfield Diffie and Martin Hellman’s 1976 paper New Directions in Cryptography began ”We stand today on
the brink of a revolution in cryptography” [1] - a claim proven unquestionably true as the consequences of their work
prove more far-reaching than any could have dared to dream at the time. In the 45 years following their paper,
mathematicians have developed several cryptographic protocols that revolutionised the landscape. One such crypto-
graphic system is the RSA public-key cryptosystem, perhaps the most famous of all. RSA is still widely used today
for everything from Bluetooth to e-banking, but in the last 45 years mathematicians have broken implementations
time and time again.

Dan Boneh’s paper Twenty Years of Attacks on the RSA Cryptosystem shed light on the major implementation
flaws that could exist in this ubiquitous protocol [2]. Other attacks such as the ROCA vulnerability of 2017, which
led to Estonia suspending 760,000 national ID cards [3], further revealed how difficult it was to safely implement
RSA. In the light of these numerous vulnerabilities, and the comparative lack of weaknesses in alternative public-key
cryptographic systems, we ask ourselves the question: Is it time to let RSA go?
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1 A Brief History of Cryptography
One of the earliest known forms of cryptography is the Caesar Cipher, supposedly used by Julius Caesar in his

private messages. The aim of the cipher is simple - to be unreadable to anyone except the intended recipient. First,
place two lists of all alphabet characters below one another. Now we shift the bottom list by a certain factor. This
means we move the letters to the left, with any characters moved past the right end being looped back to the right.
Let’s say we pick a shift of 7 (which we can call the key):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

Now we can choose a message, let’s say ATTACK. What we would do is replace each character in ATTACK
with the corresponding letter in the bottom list. For example, A would be replaced by H. If we continue through
the word ATTACK, the encrypted version of the text is HAAHJR.

But the Caesar Cipher has several weaknesses. The first is, logically, that there are only a total of 25 unique
ciphertexts (encrypted versions of the plaintext, the original message) we can possibly generate as, after we pass a
shift of 25, we essentially just start again. This makes it susceptible to a brute-force attack, where we compute
all possible shifts from 0 to 25 and analyse them to find the original message. This attack is somewhat mitigated by
other ciphers that followed from Caesar (for example any homophonic substitution cipher, where each letter is
replaced by another letter, but the replacements are in no specific order, e.g. A is replaced by E and K is replaced by
B, because there are far more possibilities). The more pressing issue is the fact that this is a symmetric encryption
scheme.

Symmetric cryptographic systems utilise the same key (in this case the shift) for both encryption and de-
cryption. This means that someone who can encrypt the message can also decrypt it. The downside, however, is
that for both parties to be able to communicate, they need to have the same key - and this leads to the problem
of key distribution. How does Alice, if she wants to send a message, communicate her key to Bob? Her messages
are sent over a public channel - sending the key along the same channel completely compromises the security of the
communication, defeating the purpose. The only way for Alice and Bob to agree upon a private key is to use a
private channel for communication - meeting in person to exchange the key, perhaps. Unsurprisingly, in the context
of the world wide web, this approach is impractical. Nowadays, the symmetric cipher of choice is AES, the Advanced
Encryption Standard, a cipher which has withstood years of attacks of all kinds.
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2 The Fundamentals of Algebra and Number Theory
We say a is divisible by b if there exists an integer k such that kb = a. We denote this as b | a, and b ∤ a if b does

not divide a.
The Greatest Common Divisor of a and b is the largest integer k such that k | a and k | b and is denoted gcd(a, b).

2.1 The Euclidean Algorithm

The Euclidean Algorithm gives us a way to efficiently calculate the greatest common divisor of two numbers a and
b by forming a series of equations linking the two [4]. To start with, we write a as a product of b and a remainder
added on:

a = b · q + r

Where q, r ∈ Z, r < b. Essentially, b divides into a q times with a remainder of r - and this unlocks a neat trick
which makes this approach work.

Let’s say g = gcd(a, b), then we can rewrite a, b as integer multiples of g, i.e. a = k1g, b = k2g:

k1g = k2g + r

But now we can rewrite this equation for r:

r = k1g − k2g = (k1 − k2)g

And we can notice that g | r. We realise that this means gcd(a, b) = gcd(b, r)! From here, we can do write the
same equation, but this time in terms of b and r:

b = r0 · q0 + r1

We essentially repeat this process several times

a = b · q0 + r1

b = r1 · q1 + r2

r1 = r2 · q2 + r3

r2 = r3 · q3 + r4

But when do we stop? Well, when rn = 0 we know that rn−1 | rn−2 and we can take rn−1 as the GCD! An
example can be found in Appendix A.1.

2.2 Extended Euclidean Algorithm

We can take the Euclidean Algorithm a step further and calculate, in addition to the GCD, u, v ∈ Z for a, b which
sum to the GCD [5], i.e.

au+ bv = gcd(a, b)

This extension of the algorithm is invaluable for calculating modular inverses of numbers and is based on using
the Euclidean Algorithm to calculate the GCD then writing it in terms of other numbers, repeating the process for
the smallest non-GCD number until we reach an equation with only the GCD and the two starting numbers. An
example can be found in Appendix A.2.

2.3 Continued Fractions

Continued Fractions are a way of representing real numbers as a sequence of positive integers. Let’s say we have a
real number α1. We can form a sequence from α1 in this way:
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α1 = a1 +
1

α2
where a1 = ⌊x⌋

For example, let’s say α1 = 1.5. We can say that

α1 = 1 +
1

2
,with α2 = 2

The trick here is that if α2 ̸∈ Z, we can continue this exact process with α2 and keep the continued fraction going.

α1 = a1 +
1

a2 +
1

a3+
1

...

2.3.1 Convergents and their Properties

The kth convergent of a continued fraction is the approximation of the fraction we gain by truncating the continued
fraction and using only the first k terms of the sequence, for example the 2nd convergence of 17

11 is 1 + 1
1 = 2

1 = 2
while the 3rd would be 1 + 1

1+ 1
1

= 1 + 1
2 = 3

2 .

One of the obvious applications of these convergents is as rational approximations to irrational numbers.
The convergents also have a series of interesting properties:

• As a sequence, they have a limit

• This limit is α1, the real number you are attempting to approximate

• They are alternately greater than and less than α1
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3 An Introduction to Modular Arithmetic
Modular Arithmetic is an incredibly important aspect of practically all asymmetric cryptography. A common

way to refer to it is as clock arithmetic - imagine it’s eleven o’clock right now. Three hours later it’ll be two o’clock,
right? Well we do the same thing in modular arithmetic:

11 + 3 = 14 ≡ 2 mod 12

Essentially we take the sum of 11 and 3 and then divide by 12 and keep the remainder. Here, the 12 is called the
modulus. The triple equals ≡ denotes a congruence, and we say 14 is congruent to 2 mod 12.

We can think of this another way and say that two numbers a and b are congruent modulo m if their difference
a− b is divisible by m. For example, 26 and 2 are congruent modulo 12 because 26− 2 = 24 which is divisible by 12.

3.1 Modular (Multiplicative) Inverses

In normal maths, every number has an inverse - another number that, when multiplied with them, equals 1. In
maths terms, we would say that for every number a there is another b where ab = 1. Generally, we can say that
b = 1

a as that fits the equation - the inverse of 7, for example, is 1
7 .

In modular arithmetic, there are no fractions. Instead of finding b such that ab = 1, we instead find b such that
ab ≡ 1 mod m. This means that for different values of m there are different inverses for a. For example, the inverse
of 3 mod 5 is 2, because 3 ·2 ≡ 1 mod 5. This inverse is called the modular multiplicative inverse. We can therefore
say that 3−1 ≡ 2 mod 5.

Yet not every number a has an inverse modulo m - for example, 2 has no inverse modulo 6. Why? This is because
gcd(2, 6) ̸= 1. Let’s prove this in the general case and see why that is.

Lemma 3.1. Given a mod m, the modular multiplicative inverse b of a exists if and only if gcd(a,m) = 1.

Proof. Assume there is b such that ab ≡ 1 mod m. This would mean that there also exists c such that ab = cm+ 1
and therefore ab−cm = 1. It follows therefore that both sides must be divisible by gcd(a,m), meaning gcd(a,m) = 1
as RHS is 1.

As a result, if there is an inverse of a modulo m, such an inverse can only exist if gcd(a,m) = 1.

3.2 The Chinese Remainder Theorem

The Chinese Remainder Theorem gives a unique solution to simultaneous linear congruences with coprime moduli
[6]. Gives a variable x and a set of remainder and moduli, the theorem calculates the lowest possible value of x.

For example, given that:

x ≡ 1 mod 3

x ≡ 4 mod 5

x ≡ 3 mod 7

In this set of congruences, the lowest possible value of x is x = 94, which you can see fits all the congruences.
There exists a simple algorithm for solving a small system of congruences by hand, which can be found in Appendix
A.3.

3.3 Rings

In modular arithmetic we work modulo some modulus m, and we can think of the numbers we are able to use this
way as a group of numbers:

Z/mZ = { 0, 1, ...,m− 1 }
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This ring Z/mZ is the ring of integers modulo m. We are able to add and multiply elements of this ring, then
divide by m and take the remainder to obtain an element in Z/mZ. There are a set of axioms that define a ring,
which can be found in Appendix A.4.

Units of a Ring

As we discussed, a ∈ Z/mZ has a modular multiplicative inverse if gcd(a,m) = 1. The set of all numbers with
modular inverses are denoted as (Z/mZ)⋆ - this is called the group of units modulo m. Numbers which have inverses
are called units. For example:

(Z/12Z)⋆ = { 1, 5, 7, 11 }

You can think of the group of units modulo m as essentially a set containing all numbers less than m which are
coprime with it.

3.4 Fields

If every number in Z/mZ has a modular inverse, it is promoted from a ring to a field (a field is a ring in which
division is possible) and can be denoted Fm. Note that the only values of m where this are possible are values which
are prime, which is why these fields are usually denoted Fp. A finite field (also called a Galois field) is a field with
a finite number of elements, such as those used in modular arithmetic. As a result, the term finite field will come up
quite often to describe Fp.

3.4.1 Euler’s Totient Function

Euler’s totient function returns the number of elements in the group of units modulo m [7]. Mathematically, this
means

ϕ(m) = #(Z/mZ)⋆ = # { 0 ≤ a < m : gcd(a,m) = 1 }

This function has a huge array of applications and further rules which allow us to do some pretty awesome things,
and is a key piece of the RSA cryptosystem.

3.4.2 Computing the Euler Totient

If we say that the prime factorisation of n is pe11 , pe22 , ..., pekk then

ϕ(n) = n
∏
p|n

(1− 1

p
)

Note that if p is prime, ϕ(p) = p− 1.

3.4.3 Euler’s Formula

Euler’s Formula states that if gcd(a, p) then

aϕ(p) ≡ 1 mod p

This is perhaps the most important formula for the RSA cryptosystem, which we will get to soon. Note that this
actually tells us a little more in the case modulo a prime , a case named after Fermat.

3.4.4 Fermat’s Little Theorem

Since ϕ(p) = p− 1, Fermat’s Little Theorem states that [8]:

ap−1 ≡ 1 mod p
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This was stated by Fermat over 100 years before Euler’s Formula. You may note that this also gives us a quick
way to compute the modular multiplicative inverse of a in Fp:

ap−1 ≡ 1 mod p

ap−1 · a−1 ≡ 1 · a−1 mod p

ap−2 ≡ a−1 mod p
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4 RSA - An Introduction
RSA is the most widely-used asymmetric cryptographic system in use, and the mathematics behind it are decep-

tively simple.

4.1 Encryption

Alice first generates primes p and q and N such that N = pq. This is half of the public key, with the other half being
the public exponent e, which should be coprime to ϕ(N) (meaning gcd(ϕ(N), e) = 1). These two values are then
made public.

If Bob wants to send a message to Alice using RSA, he calculates:

c ≡ Me mod Nr

Where c is now the ciphertext and is sent to Alice.

4.2 Decryption

Alice calculates ϕ(N) = (p− 1)(q − 1) and then calculates the modular multiplicative inverse d of e mod N . d
is the private key used for the decryption which is known only to Alice.

To decrypt, the Alice calculates again:

M = cd mod N

The proof for this is based on Euler’s Formula. Because we calculated d such that de ≡ 1modϕ(N), then we
know that there is an integer k such that . Also note that cd ≡ (Me)d ≡ Mde:

Mde ≡ Mkϕ(N)+1 ≡ Mkϕ(N) ×M ≡ (Mϕ(N))k ×M ≡ 1k ×M ≡ M mod N

Meaning we get back to the original plaintext M .
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5 RSA - Attacks
RSA has been extensively studied since it was first published in 1977, and since then countless of ingenious attacks

have been developed that compromise its security. There are a host of ways in which the implementation of the
algorithm can fail, from choosing a public exponent which is too small, to one that is to big, to making p and q too
close numerically. These implementation flaws constantly crop up, even in large libraries used in the most important
systems in the world. Even OpenSSL, the cryptographic suite of tools used by the majority of websites and developed
by professionals, has been found to have flaws within the last few years. In this section, we will go over different types
of attacks, and outline examples to show how RSA can be made insecure with such few implementation mistakes.

5.1 Small Public Exponent - H̊astad’s Broadcast Attack

Commonly, a user may want to send the same message to multiple people. In this scenario, the public exponent e
stays the same (it is often standardised) but the public key N may vary.

H̊astad’s Broadcast Attack can be used when the same message m is sent to at least e people with the public
modulus N1, N2, ..., Ne. For example, if we say e = 3, then we have the following three congruences:

me ≡ c1 mod N1

me ≡ c2 mod N2

me ≡ c3 mod N3

The Chinese Remainder Theorem is a technique used for solving a set of simultaneous linear congruences
where the moduli are coprime - in this example, it’s a way of finding me mod N1N2N3. However, note that m is
less than the smallest Nx we have, therefore if we have e public moduli then me < N1N2...Ne. This means we can
simply take the regular eth root of me rather than the modular root as it is impossible for me it to be greater than
the modulus.

An example can be found in Appendix A.5.

5.2 Large Public Exponent - Wiener’s Attack

Conversely, if e is too large, this also creates a vulnerability as its inverse mod ϕ(N) d is necessarily small. If d is

sufficiently small (d < 1
3N

1
4 ) then we can retrieve the private key using the theory of continued fractions [2]. Wiener’s

Attack utilises the convergents of the continued fraction expansion of k
d to attempt to guess the decryption exponent.

We can say that

ϕ(N) = (p− 1)(q − 1)

= pq − (p+ q) + 1

≈ N

We can also say that since ed ≡ 1 mod ϕ(N), we can rearrange this to say that ed = kϕ(N) + 1:

ed = kϕ(N) + 1

ed− kϕ(N) = 1

e

ϕ(N)
− k

d
=

1

dϕ(N)
divide by dϕ(N)

Now since dϕ(N) is likely to be huge, we can say it’s almost zero, and also use the approximation from before to
say that

e

N
≈ k

d
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Note that e
N is comprised of entirely public information, and gives us a good approximation of k

d . which is
entirely private information.

We can represent e
N as a continued fraction. If we go through the convergents of this fraction, we may come

across k
d since e

N ≈ k
d . This is more likely to work when d is smaller due to Legendre’s Theorem in Diophantine

Approximations, specifically d < 1
3N

1
4 [2].

Once we list the convergents, we iterate through and there are a few checks we can make to determine whether
or not it’s the correct convergent:

1. As ed ≡ 1 mod ϕ(N) and ϕ(N) is even, dmust be odd, so we can discard convergences with even denominators.

2. Since ϕ(N) must be a whole number, we can compute ed−1
k and see if it returns an integer or not - if not, we

can discard the convergent.

Once we find a convergent we don’t discard, we can assume it’s k
d and see if the resultant private key yields a

valid result or not. This can take a lot of decryption attempts to work successfully however - we can speed up the
”checking” process using a quadratic equation to give us p and q out of the box, which is more efficient.

If we say that N = pq, it follows that:

ϕ(N) = (p− 1)(q − 1)

ϕ(N) = N − (p+ q) + 1

p+ q = N − ϕ(N) + 1

If we now consider the quadratic equation (x− p)(x− q) = 0 with roots p and q being the prime factors of N , we
can expand this and substitute:

(x− p)(x− q) = 0

x2 − (p+ q)x+N = 0

x2 − (N − ϕ(N) + 1)x+N = 0

If our value of ϕ(N) is correct, we can substitute this into the equation and solve it for two integer values p and q.
If the values are not integer, the result can be discarded. If they are, we can use d to decrypt the data from before.

5.3 Prime Number Choice - p and q numerically close

If p and q are numerically close, we can use an approach called Fermat Factorisation to factorise N . During
Fermat Factorisation, we hope to find a and b such that

a2 − b2 = N

Because we can then factorise the left-hand expression into

(a+ b)(a− b) = N

And thus get p and q as a + b and a − b. The reason we use this when p and q are numerically close is because
the closer they are to each other the closer they are to

√
N . If we say a =

√
N rounded up to the nearest number,

we can calculate b2 = a2 − N (as rearranged from before) until b is a whole number, after which we’ve solved the
equation. If p and q are not close, we would require far too many iterations of a and b for this to be feasible.
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6 The Diffie-Hellman Key Exchange
We will now introduce cryptographic protocols that are alternatives to the RSA cryptosystem. Unlike RSA,

where you can send messages of your choice, the DHKE is used to generate a secret number shared between Alice
and Bob. This shared secret is then used as the key for a symmetric cryptosystem like the Advanced Encryption
Standard (AES), the foremost symmetric cryptosystem [9].

6.1 The Key Exchange

A large prime p and a generator g ∈ Fp, g ̸= 0 are made public. Alice and Bob choose their secret integers a and b
respectively. They then compute the following:

A = ga mod p

B = gb mod p

These numbers A and B are exchanged between Alice and Bob over a public channel. Once the other person’s
number is received, they then put it to the power of their secret integer, i.e. Alice computes Ba and Bob computes
Ab, both modulo p. Note that:

Ba = (gb)a = gab = (ga)b = Ab

This means that once they do this, they are in possession of the same number, which they can then use as a
shared secret.

6.2 The Discrete Logarithm Problem

The safety of the Diffie-Hellman Key Exchange is grounded on the difficulty of solving the discrete logarithm problem
- the difficulty of computing x given

gx ≡ a mod p

You can see this in the overview of the key exchange, presented above - the values ga mod p and gb mod p are
sent over a public channel, but because we cannot solve the DLP efficiently an attacker is unable to retrieve a or b.
We say that the DLP is DHKE’s trapdoor function. As a result, many attacks on Diffie-Hellman rely on situations
in which you can efficiently compute the discrete logarithm, the most notable of which is when in the finite field Fp

and p− 1 is a smooth number, meaning it has a large number of small factors. The Pohlig-Hellman algorithm
efficiently solves the DLP in when such a prime is used.

6.3 The Pohlig-Hellman Algorithm

Recall from Euler’s Theorem that aϕ(N) ≡ 1 mod N . Let ϕ(N) = pq, where GCD(p, q) = 1 (but they are not
necessarily prime). We can now attempt to solve the discrete logarithm problem ax ≡ b mod N :

Let x = a0 + a1p. Then:

ax ≡ b mod N

aqx ≡ bq

aa0q+a1pq ≡ bq

aa0q · aa1pq ≡ bq

(aa0)q · (apq)a1 ≡ bq

(aa0)q · 1a1 ≡ bq Euler’s Theorem

(aq)a0 ≡ bq

Since aq and bq are known quantities that can be easily calculated, we can determine a0 through trial and error.
We could have done this originally for x, but note that as x = a0 + a1p, a0 < p and therefore there are far fewer
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possibilities to try for a0 as we only have to go up to p as opposed to N if we had tried with x.

Once we find a0, since x = a0 + a1p we know that x ≡ a0 mod p, giving us a congruence. Repeating this the
other way by putting both sides to the power of p will yield us a second congruence modulo q, and we can combine
the two and solve for x using the Chinese Remainder Theorem.

The ”smoother” the prime p is (the smaller the factors of p−1 are) the more efficient the Pohlig-Hellman algorithm
is for solving the Discrete Logarithm Problem, as the smaller the prime factors of ϕ(N) the faster the calculations
can be made.

This implementation of the Pohlig-Hellman algorithm works perfectly for modular arithmetic, but there is in fact
a generic Pohlig-Hellman algorithm that works for any group, and we will see this later. In the generic algorithm, it
is the order of the group (the number of elements in the group) that needs to be smooth, and this is also true in
this implementation - when working modulo p, we are working in the field Fp, which has p− 1 elements (all numbers
1, 2, . . . , p− 1; 0 is not included in (Z/pZ)∗) and therefore order p− 1.
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7 Elliptic Curve Cryptography
Another alternative cryptographic system involves the use of elliptic curves for the trapdoor function. Confus-

ingly, elliptic curves actually have nothing to do with the concept of an ellipse - they are completely distinct, but
unfortunately named. Elliptic Curves are, quite simply, a special type of curve. Here we’ll be talking about curves
in Weierstrass Form, which looks like the following:

y2 = x3 + ax+ b

Where a and b are integers. A good example is the following, from the equation y2 = x3 − 2x+ 3:

The rational points on an elliptic curve are all the points on the curve with rational x and y values. The beauty
of these curves is that the rational points form a group, meaning they are all linked by an operation. If we choose
any two rational points, drawing a line between them intersects the curve at a third point R. If we reflect R in the
x-axis, we get the point R′ and we say this point R′ is the result of the point addition of P and Q. This is the
operation of the group.

We can also double a point, meaning we compute P + P . Remember that in this context (and from now on)
the + symbol is not regular addition but our new operation point addition, which given two points on the curve
returns a third. How we do that may not be immediately obvious, for surely there are an infinite number of lines
passing through P? What we do in this case is take the tangent to the curve. The tangent is a line which only
touches the curve at one point - you can think of it as being exactly parallel to the specific point you are drawing it
at. Once we find the point of intersection of the curve, we again reflect it in the x-axis to calculate 2P .
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(a) Finding the third point R (b) Finding P +Q

Figure 1: Images courtesy of Joseph Silverman’s 2006 presentation slides

(a) Finding P + P = 2P

Figure 2: Image courtesy of Joseph Silverman’s 2006 presentation slides

Calculating the tangent involves some implicit differentiation:

y2 = x3 − 2x+ 3

2y
dy

dx
= 3x2 − 2

dy

dx
=

3x2 − 2

2y

And substituting the point P = (x, y) yields the gradient at the point P .

If we attempt to calculate P + (−P ), i.e. the point on the curve with the same x-coordinate but the negative
y-coordinate, we have a slight problem - clearly, if we go through both points, there is no third intersection with the
curve, and point addition fails. We say the result of this addition is O, the point at infinity. If you want to add
this point to any point X, we say that X +O = X and as such O is the identity element of the group.
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It is noticeable that the numbers could get very big very quickly, and square rooting these huge numbers would
be extremely resource-intensive. Instead, when we use ECC practically, we use modular arithmetic and work over
Fp and reduce the x and y coordinates of the points modulo p. The operation of point addition and the structure of
the group still holds even for elliptic curves over a finite field, which we denote E(Fp).

7.1 The Key Exchange Protocol

If Alice and Bob wish to generate a shared secret, they first choose an elliptic curve E(Fp). The curve can be made
public, but this doesn’t compromise the security of the exchange. They next choose a rational point G ∈ E(Fp),
which we call the generator point. This point is also made public.

Now Alice and Bob generate a private number each, and we’ll call these numbers a and b respectively. Alice then
calculates the rational point A, which is done by adding the generator G to itself a times, i.e. A = aG. Bob does the
same with his private number to calculate B = bG. Remember that even though we write bG as if it’s multiplication,
it’s actually just b series of point additions (not regular addition!) of G to itself! The multiplication notation is just
a handy shortcut. Once this is done, Alice sends A to Bob and Bob sends B back.

A = aG Alice

B = bG Bob

Let’s say that a = 1000 and b = 800. Alice will receive B = 800G from Bob while Bob receives A = 1000G from
Alice. The trick here is that Alice can now add B to G another a (1000) times, that is calculate B+G+G+ ...+G
until she calculates Sa = B+1000G = 800G+1000G = 1800G, the equivalent of performing a point addition of G
to itself a total of 1800 times. Bob, in turn, adds A to G another b (800) times. Note that this means Bob computes
Sb = A + 800G = 1000G + 800G = 1800G. But that means Sa = Sb, as both are the result of adding G to itself a
total of 1800 times!

The incredible thing here is that the value S is a shared secret, a value known only to Alice and Bob. The x-
coordinate of S can be used as the private key for a symmetric protocol, with which Alice and Bob can communicate
efficiently in secret.

It is also noteworthy that if the operations were not done over Fp, points added to themselves more times would
have more extreme x and y values, meaning that by doing the arithmetic modulo p we eliminate the possibility of
analysing the point values.

7.2 The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The ECDLP essentially comes down to:
Given G,A ∈ E(Fp) and A = aG, is it possible to retrieve a?

This problem is deceptively hard, and requires far more than a simple rearrangement - remember that it is not
basic multiplication, but rather point addition that is the operation in question here. You may also notice the phrase
Discrete Logarithm Problem again, which is the trapdoor function of the Diffie-Hellman Key Exchange. In fact, this
is essentially the same problem, just with a different operation - point addition rather than multiplication. As such,
the problem is really abstracted away into the group, and the generic Pohlig-Hellman algorithm can once again
be used on the curve E(Fp) provided that the order of the curve is smooth.
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8 A Comparison

8.1 Implementation Security

As can be seen in previous sections, as well as more completely in Boneh’s Twenty Years of Attacks on the RSA
Cryptosystem, the RSA cryptographic protocol is vulnerable to a wide array of attacks [2]. This makes RSA fiendishly
complex to implement correctly, and even major libraries such as OpenSSL (the most widely-used cryptographic
library) can fail to do it correctly [10]. In 1998, Daniel Bleichenbacher discovered a vulnerability in the way RSA
was implemented in SSL (the predecessor of TLS, the protocol responsible for securing HTTPS communications
throughout the entirety of the internet) by crafting around a million messages and analysing error codes. This
attack has been refined in recent years, and websites such as Facebook were shown to be vulnerable to a variant of
Bleichenbacher’s Attack (called the ROBOT attack) as recently as 2017 [11].

By contrast, protocols such as the Diffie-Hellman Key Exchange and Elliptic Curve Cryptography are vulnerable
to far fewer such attacks, and with the notable exception of the Pohlig-Hellman Algorithm (which, as stated before,
efficiently solves the discrete logarithm when the order of the group is smooth) the most dangerous such attacks
are man-in-the-middle attacks such as the Logjam Attack, where an attacker positions themselves to intercept
communications between the two parties in order to downgrade the security of the Diffie-Hellman Key Exchange
[12]. Mathematical attacks on the protocols themselves are fairly trivial to prevent - in the case of Pohlig-Hellman,
one simply makes the public prime p a safe prime, a prime number in the form p = 2q + 1 where q is also a prime
number.

8.2 Relative Efficiency

One important statistic is the bit security of an algorithm - how many bits of data is required to produce how
many bits of security. This number represents the order of magnitude of the amount of resources needed to break a
crypto primitives’ security [13]. If an algorithm has n-bit security, that means we believe it would take 2n operations
to break the security of the protocol.

In this regard, RSA severely lags behind alternatives such as ECC - 1024-bit RSA keys give 80 bits of security
[14] while 2048-bit RSA keys give 112 bits of security [14]. ECC, by contrast, only require 160 or 192 bits of data
(depending on the implementation) to provide the same level of security as RSA-1024 [14] [15]. Additionally, compu-
tational power is increasing rapidly, meaning the security of our algorithms will have to increase too. Increasing key
sizes has a much greater effect on ECC security than RSA. In order to provide 128 bits of security, RSA requires a
key size of 3072 bits; in order to provide 256 bits of security, RSA requires a key size of 15360 bits [14]. A doubling of
bit security requires a key of 5 times the bits. ECC requires 256 bits for 128-bit security and 512 bits for 256-bit se-
curity [14] [16] - which is much more proportional and scalable, meaning an increase in security is far easier to achieve.

Distinct from the mathematical security of the algorithm, another consideration is the speed itself. ECC’s use
of smaller keys means less data is transferred between the server and the client during key exchanges such as the
TLS handshake [16]. Additionally, ECC requires far less processing power and memory, resulting in faster operation
speeds, which is obviously ideal for making operations such as connecting to a website securely as far as possible for
the end user [16].

8.3 Perfect Forward Secrecy

The security of a set of communications is crucial, but another important factor is the security of past commu-
nications. It is not uncommon for attackers (including governments!) to store the data from key exchanges and
the resulting communications for a period of time and then compromise it when the technology becomes powerful
enough [11] - once computers become fast enough to break the system, we can decrypt messages from 5 years ago.
This may not seem like a threat to the average user, but even 5 years down the line private information such as credit
card details may be valid. Military and state secrets are definitely going to be valid. Ultimately, it is a risk few can
afford to take. We say traditional RSA lacks perfect forward secrecy, as a single compromise at any point can
decrypt all messages ever sent. Why? Well, if we do manage to factor N , we can calculate the private key d. This
private key is valid for all communications that ever took and will take place.
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The Signal protocol, which encrypts communications in everything from WhatsApp to Google’s Allo messenger
[17], uses the Diffie-Hellman Key Exchange with perfect forward secrecy. To achieve perfect forward secrecy, both
sides of the protocol generate a new key for every message they send. This means that if one key gets broken,
only a single message can be read using that information. In order to read important data, the keys would have
to be broken again and again. Perfect forward secrecy doesn’t suit RSA as the key generation is computationally
expensive, while for protocols like the Diffie-Hellman Key Exchange and Elliptic Curve Cryptography the generation
is incredibly simple. This lack of perfect forward secrecy led to TLS 1.3 removing support for RSA key exchanges,
opting instead for algorithms that effectively support the feature [11] [18].

8.4 The Quantum Computing Era and the Effects on Cryptography

All the protocols we have analysed so far rely on trapdoor functions - functions that are easy to perform in one
direction, but difficult to reverse. For RSA, the trapdoor function is multiplication of large primes; for DHKE, the
DLP; for ECC, the ECDLP.

All three of these trapdoor functions are indeed difficult to reverse - for a classical computer. In 1954, Peter
Shor proposed what is now known as Shor’s Algorithm, an algorithm for quantum computers that enables them to
factor integers and solve the DLP and the ECDLP in polynomial time [19]. While there are no quantum computers
in existence that are capable of executing such algorithms at the scale required to compromise security, their very
existence is a warning to the cryptography community that new protocols have to be found and accepted relatively
soon. NIST (the National Institute of Standards and Technology), the body responsible for standardising and
recommending cryptosystems, started a competition to find an accepted and quantum-safe cryptosystem. Four
algorithms made it to Round 3 of the NIST standardisation process [20]. While these four protocols have yet to
be broken, the Rainbow signature scheme (a finalist for the Digital Signature Algorithms category) was broken in
February 2022, nearly five years after its submission [21]. This shows the rigour required to come to an accepted
protocol - the world’s leading mathematicians are submitting systems that pass a huge number of initial validation
checks only to eventually be shown to be insecure.

8.5 Conclusion

In conclusion, RSA is a poor cryptosystem to use in the modern world. It it outshone in performance efficiency by
protocols such as the Diffie-Hellman Key Exchange and Elliptic Curve Cryptography, while also lacking the benefits
of Perfect Forward Secrecy and being fiendishly difficult to implement correctly. Protocols such as TLS have already
recognised this and begun to phase out RSA in favour of better alternatives, which will ultimately be beneficial. All
of these alternatives, however, will also have to be replaced in the very near future in preparation for the onslaught
of quantum supremacy; cryptosystems such as NTRU will become the new standard. One way or another, the
conclusion is clear: it is time to let RSA go.
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A Appendix

A.1 Euclidean Algorithm

Let’s say we want to find the GCD of 8075 and 16283. First, we can write it in the form a = b · q + r:

16283 = 8075 · 2 + 133

And now we attempt to calculate the GCD of 8075 and 133.

8075 = 133 · 60 + 95

133 = 95 · 1 + 38

95 = 38 · 2 + 19

38 = 19 · 2 + 0

Therefore the GCD of 16283 and 8075 is 19.

A.2 Extended Euclidean Algorithm

Let’s work with the example from Appendix A.1, writing an equation for the GCD:

19 = 95− 38 · 2

Now 38 is the smallest non-GCD number, and we can write it in terms of the larger number in the sequence of
equations written in Section 2.1.1, then repeat for the next smallest:

19 = 95− 38 · 2
= 95− (133− 95 · 1) · 2
= 95− (133 · 2 + 95 · −2)

= 95 · 3 + 133 · −2

= (8075 + 133 · −60) · 3 + 133 · −2

= 8075 · 3 + 133 · −180 + 133 · −2

= 8075 · 3 + 133 · −182

= 8075 · 3 + (16283 + 8075 · −2) · −182

= 8075 · 3 + 16283 · −182 + 8075 · 364
= 8075 · 367 + 16283 · −182

Therefore our equation au+ bv = gcd(a, b) is as follows:

16283 · −182 + 8075 · 367 = 19

A.3 Solving the System of Congruences

First, we begin with the largest modulus, x ≡ 3 mod 7. We rewrite this as

x = 7j + 3 (1)

Substitute this into the next congruence x ≡ 4 mod 5:
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x ≡ 4 mod 5 (2)

7j + 3 ≡ 4 mod 5 (3)

7j ≡ 1 mod 5 (4)

j ≡ 3 mod 5 (5)

Now we do the same thing for j and write it as

j = 5k + 3 (6)

Substitute this back into (1), we get

x = 7(5k + 3) + 3 = 35k + 24 (7)

Now we substitute this into the final congruence

x ≡ 1 mod 3 (8)

35k + 24 ≡ 1 mod 3 (9)

2k ≡ 1 mod 3 (10)

k ≡ 2 mod 3 (11)

Now we can write k as

k = 3l + 2 (12)

And substitute it back into (6):

x = 35(3l + 2) + 24 = 105l + 94 (13)

Note that 105 is divisible by all moduli, so the 105l will disappear in all congruences. This leaves 94 as the solution
for x that fits all congruences. Note that that means x ≡ 94 mod 105, so there are infinite possible solutions. The
Chinese Remainder Theorem will always solve the congruences to the lowest common multiple of all moduli.

A.4 Ring Axioms

Certain rules define a ring R:
Firstly, R is an abelian group under addition, meaning that

1. R is closed under addition (∀a, b ∈ R, a+ b ∈ R)

2. There is an additive identity (0)

3. Every element has an additive inverse (∀a ∈ R,∃ − a ∈ R)

4. Addition is associative (∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c))

5. Addition is commutative (∀a, b ∈ R, a+ b = b+ a)

Secondly, R is closed under multiplication, which is associative.
Thirdly, Multiplication distributes over addition:

a · (b+ c) = a · b+ a · c

[22]
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A.5 H̊astad’s Broadcast Attack

Let’s say e = 3, and

m3 ≡ 63 mod 131

m3 ≡ 13 mod 137

m3 ≡ 83 mod 191

We can use the Chinese Remainder Theorem to calculate that the solution for this system of congruences is
m3 ≡ 1442897 mod 3427877. Since m3 is guaranteed to be less than 3427877, we can say that m3 = 1442897. We
can then simply say that m = 3

√
1442897 = 113, retrieving the secret message m.

20



References
[1] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”. In: IEEE TRANSACTIONS ON

INFORMATION THEORY IT-22.6 (1976). url: https://ee.stanford.edu/~hellman/publications/24.
pdf.

[2] Dan Boneh. “Twenty Years of Attacks on the RSA Cryptosystem”. In: NOTICES OF THE AMS 46 (Feb.
2002). url: https://crypto.stanford.edu/~dabo/pubs/papers/RSA-survey.pdf.

[3] BBC, ed. Security flaw forces Estonia ID ’lockdown’. Nov. 2017. url: https://www.bbc.co.uk/news/
technology-41858583.

[4] Euclidean Algorithm. url: https://brilliant.org/wiki/euclidean-algorithm/.

[5] Extended Euclidean Algorithm. url: https://brilliant.org/wiki/extended-euclidean-algorithm/.

[6] Chinese Remainder Theorem. url: https://brilliant.org/wiki/chinese-remainder-theorem/.

[7] Euler’s Totient Function. url: https://brilliant.org/wiki/eulers-totient-function/.

[8] Fermat’s Little Theorem. url: https://brilliant.org/wiki/fermats-little-theorem/.

[9] Advanced Encryption Standard (AES). Nov. 2001. url: https://www.nist.gov/publications/advanced-
encryption-standard-aes.

[10] CVE-2018-0737. url: https://www.cvedetails.com/cve/CVE-2018-0737.

[11] Nick Sullivan. A Detailed Look at RFC 8446 (a.k.a. TLS 1.3). Nov. 2018. url: https://blog.cloudflare.
com/rfc-8446-aka-tls-1-3/.

[12] David Adrian et al. “Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”. In: 22nd ACM Con-
ference on Computer and Communications Security (Oct. 2015). doi: 10.1145/2810103.2813707.
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